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elegant. Disadvantages: It is less explicit than the microscopic approach. Most impor-

tantly, it does not fix the coefficients of the different contributions to the action.

Thus far, we have introduced some basic concepts of field theoretical modeling in condensed

matter physics. Starting from a microscopic model Hamiltonian, we have illustrated how

principles of universality and symmetry can be applied to distill effective continuum field

theories capturing the low-energy content of the system. We have formulated such theories in

the language of Lagrangian and Hamiltonian continuum mechanics, respectively, and shown

how variational principles can be applied to extract concrete physical information. Finally,

we have seen that field theory provides a unifying framework whereby analogies between

seemingly different physical systems can be uncovered. In the next section we discuss how

the formalism of classical field theory can be elevated to the quantum level.

1.4 Quantum chain

Earlier we saw that, at low temperatures, the excitation profile of the classical atomic chain

differs drastically from that observed in experiment. Generally, in condensed matter physics,

low-energy phenomena with pronounced temperature sensitivity are indicative of a quantum

mechanism at work. To introduce and exemplify a general procedure whereby quantum

mechanics can be incorporated into continuum models, we next consider the low-energy

physics of the quantum mechanical atomic chain.

The first question to ask is conceptual: how can a model like Eq. (1.4) be quantized

in general? Indeed, there exists a standard procedure for quantizing continuum theories,

which closely resembles the quantization of Hamiltonian point mechanics. Consider the

defining Eq. (1.9) and (1.10) for the canonical momentum and the Hamiltonian, respectively.

Classically, the momentum π(x) and the coordinate φ(x) are canonically conjugate variables:

{π(x), φ(x′)} = −δ(x−x′) where {, } is the Poisson bracket and the δ-function arises through

continuum generalization of the discrete identity {PI , RI′} = −δII′ , I, I ′ = 1, . . . , N . The

theory is quantized by generalization of the canonical quantization procedure for the discrete

pair of conjugate coordinates (RI , PI) to the continuum: (i) promote φ(x) and π(x) to

operators, φ �→ φ̂, π �→ π̂, and (ii) generalize the canonical commutation relation [PI , RI′ ] =

−i�δII′ to12

[π̂(x), φ̂(x′)] = −i�δ(x− x′). (1.25)

Operator-valued functions like φ̂ and π̂ are generally referred to as quantum fields. For

clarity, the relevant relations between canonically conjugate classical and quantum fields

are summarized in Table 1.2.

INFO By introducing quantum fields, we have departed from the conceptual framework laid

out on page 6: being operator-valued, the quantized field no longer represents a mapping into an

12 Note that the dimensionality of both the quantum and the classical continuum field is compatible with the

dimensionality of the Dirac δ-function, [δ(x − x′)] = [length]−1, i.e. [φ(x)] = [φI ] · [length]−1/2 and similarly
for π.
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Table 1.2 Relations between discrete and continuum canonically

conjugate variables/operators.

Classical Quantum

Discrete {PI , RI′} = −δII′ [P̂I , R̂I′ ] = −i�δII′

Continuum {π(x), φ(x′)} = −δ(x− x′) [π̂(x), φ̂(x′)] = −i�δ(x− x′)

ordinary differentiable manifold.13 It is thus legitimate to ask why we bothered to give a lengthy

exposition of fields as “ordinary” functions. The reason is that, in the not too distant future,

after the framework of functional field integration has been introduced, we will return to the

comfortable ground of the definition of page 6.

Employing these definitions, the classical Hamiltonian density (1.10) becomes the quantum

operator

Ĥ(φ̂, π̂) =
1

2m
π̂2 +

ksa
2

2
(∂xφ̂)

2. (1.26)

The Hamiltonian above represents a quantum field theoretical formulation of the problem

but not yet a solution. In fact, the development of a spectrum of methods for the analysis of

quantum field theoretical models will represent a major part of this text. At this point the

objective is merely to exemplify the way physical information can be extracted from models

like Eq. (1.26). As a word of caution, let us mention that the following manipulations, while

mathematically straightforward, are conceptually deep. To disentangle different aspects of

the problem, we will first concentrate on plain operational aspects. Later, in Section 1.4,

we will reflect on “what has really happened.”

As with any function, operator-valued functions can be represented in a variety of different

ways. In particular, they can be subjected to Fourier transformation,{
φ̂k

π̂k
≡ 1

L1/2

∫ L

0

dx e{∓ikx

{
φ̂(x)

π̂(x)
,

{
φ̂(x)

π̂(x)
=

1

L1/2

∑
k

e{±ikx

{
φ̂k

π̂k
, (1.27)

where
∑

k represents the sum over all Fourier coefficients indexed by quantized momenta

k = 2πm/L, m ∈ Z (not to be confused with the “operator momentum” π̂!). Note that

the real classical field φ(x) quantizes to a Hermitian quantum field φ̂(x), implying that

φ̂k = φ̂†
−k (and similarly for π̂k). The corresponding Fourier representation of the canonical

commutation relations reads (exercise)

[π̂k, φ̂k′ ] = −i�δkk′ . (1.28)

13 At least if we ignore the mathematical subtlety that a linear operator can also be interpreted as an element of
a certain manifold.
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When expressed in the Fourier representation, making use of the identity

∫
dx (∂xφ̂)

2 =
∑
k,k′

(−ikφ̂k)(−ik′φ̂k′)

δk+k′,0︷ ︸︸ ︷
1

L

∫
dx e−i(k+k′)x=

∑
k

k2φ̂kφ̂−k =
∑
k

k2|φ̂k|2

together with a similar relation for
∫
dx π̂2, the Hamiltonian Ĥ =∫

dx H(φ̂, π̂) assumes the near diagonal form

Ĥ =
∑
k

[
1

2m
π̂kπ̂−k +

mω2
k

2
φ̂kφ̂−k

]
, (1.29)

where ωk = v|k| and v = a
√

ks/m denotes the classical sound wave

velocity. In this form, the Hamiltonian can be identified as nothing but

a superposition of independent harmonic oscillators.14 This result is actually not difficult

to understand (see figure): Classically, the system supports a discrete set of wave excitations,

each indexed by a wave number k = 2πm/L. (In fact, we could have performed a Fourier

transformation of the classical fields φ(x) and π(x) to represent the Hamiltonian function

as a superposition of classical harmonic oscillators.) Within the quantum picture, each of

these excitations is described by an oscillator Hamiltonian operator with a k-dependent

frequency. However, it is important not to confuse the atomic constituents, also oscillators

(albeit coupled), with the independent collective oscillator modes described by Ĥ.

The description above, albeit perfectly valid, still suffers from a deficiency: our analy-

sis amounts to explicitly describing the effective low-energy excitations of the system (the

waves) in terms of their microscopic constituents (the atoms). Indeed the different con-

tributions to Ĥ keep track of details of the microscopic oscillator dynamics of individual

k-modes. However, it would be much more desirable to develop a picture where the relevant

excitations of the system, the waves, appear as fundamental units, without explicit account

of underlying microscopic details. (As with hydrodynamics, information is encoded in terms

of collective density variables rather than through individual molecules.) As preparation for

the construction of this improved formulation of the system, let us temporarily focus on a

single oscillator mode.

Revision of the quantum harmonic oscillator

Consider a standard harmonic oscillator (HO) Hamiltonian

Ĥ =
p̂2

2m
+

mω2

2
x̂2.

14 The only difference between Eq. (1.29) and the canonical form of an oscillator Hamiltonian Ĥ = p̂2/(2m) +

mω2x̂2/2 is the presence of the sub-indices k and −k (a consequence of φ̂†
k = φ̂−k). As we will show shortly,

this difference is inessential.
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ω

Figure 1.6 Low-lying energy levels/states of the harmonic oscillator.

The first few energy levels εn = ω
(
n+ 1

2

)
and the associated Hermite polynomial eigen-

functions are displayed schematically in Fig. 1.6. (To simplify the notation we henceforth

set � = 1.)

The HO has, of course, the status of a single-particle problem. However, the equidistance

of its energy levels suggests an alternative interpretation. One can think of a given energy

state εn as an accumulation of n elementary entities, or quasi-particles, each having energy

ω. What can be said about the features of these new objects? First, they are structureless,

i.e. the only “quantum number” identifying the quasi-particles is their energy ω (otherwise

n-particle states formed of the quasi-particles would not be equidistant). This implies that

the quasi-particles must be bosons. (The same state ω can be occupied by more than one

particle, see Fig. 1.6.)

This idea can be formulated in quantitative terms by employing the formalism of ladder

operators in which the operators p̂ and x̂ are traded for the pair of Hermitian adjoint

operators â ≡
√

mω
2 (x̂+ i

mω p̂), â
† ≡

√
mω
2 (x̂− i

mω p̂). Up to a factor of i, the transformation

(x̂, p̂) → (â, â†) is canonical, i.e. the new operators obey the canonical commutation relation

[â, â†] = 1. (1.30)

More importantly, the a-representation of the Hamiltonian is very simple, namely

Ĥ = ω

(
â†â+

1

2

)
, (1.31)

as can be checked by direct substitution. Suppose, now, we had been given a zero eigenvalue

state |0〉 of the operator â: â|0〉 = 0. As a direct consequence, Ĥ|0〉 = (ω/2)|0〉, i.e. |0〉 is

identified as the ground state of the oscillator.15 The complete hierarchy of higher energy

states can now be generated by setting |n〉 ≡ (n!)−1/2 (â†)n|0〉.

EXERCISE Using the canonical commutation relation, verify that Ĥ|n〉 = ω(n + 1/2)|n〉 and

〈n|n〉 = 1.

Formally, the construction above represents yet another way of constructing eigenstates of

the quantum HO. However, its “real” advantage is that it naturally affords a many-particle

interpretation. To this end, let us declare |0〉 to represent a “vacuum” state, i.e. a state with

zero particles present. Next, imagine that â†|0〉 is a state with a single featureless particle

15 This can be verified by explicit construction. Switching to a real-space representation, the solution of the

equation [x + ∂x/(mω)]〈x|0〉 = 0 obtains the familiar ground state wavefunction 〈x|0〉 =
√

mω/2πe−mωx2/2.
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Figure 1.7 Diagram visualizing an excited state of the chain. Here, the number of quasi-particles
decreases with increasing energy ωk.

(the operator â† does not carry any quantum number labels) of energy ω. Similarly, (â†)n|0〉
is considered as a many-body state with n particles, i.e. within the new picture, â† is an

operator that creates particles. The total energy of these states is given by ω × (occupation

number). Indeed, it is straightforward to verify (see exercise above) that â†â|n〉 = n|n〉, i.e.
the Hamiltonian basically counts the number of particles. While, at first sight, this may

look unfamiliar, the new interpretation is internally consistent. Moreover, it achieves what

we had asked for above, i.e. it allows an interpretation of the HO states as a superposition

of independent structureless entities.

INFO The representation above illustrates the capacity to think about individual quantum

problems in complementary pictures. This principle finds innumerable applications in modern

condensed matter physics. The existence of different interpretations of a given system is by no

means heretical but, rather, reflects a principle of quantum mechanics: there is no “absolute”

system that underpins the phenomenology. The only thing that matters is observable phenomena.

For example, we will see later that the “fictitious” quasi-particle states of oscillator systems

behave as “real” particles, i.e. they have dynamics, can interact, be detected experimentally, etc.

From a quantum point of view these object are, then, real particles.

Quasi-particle interpretation of the quantum chain

Returning to the oscillator chain, one can transform the Hamiltonian (1.29) to a form

analogous to (1.31) by defining the ladder operators16

âk ≡
√

mωk

2

(
φ̂k +

i

mωk
π̂−k

)
, â†k ≡

√
mωk

2

(
φ̂−k − i

mωk
π̂k

)
. (1.32)

With this definition, applying the commutation relations Eq, (1.28), one finds that the

ladder operators obey commutation relations generalizing Eq. (1.30):[
âk, â

†
k′

]
= δkk′ , [âk, âk′ ] =

[
â†k, â

†
k′

]
= 0. (1.33)

16 As to the consistency of these definitions, recall that φ̂†
k = φ̂−k and π̂†

k = π̂−k. Under these conditions the
second of the definitions following in the text follows from the first upon taking the Hermitian adjoint.
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Figure 1.8 Phonon spectra of the transition metal oxide Sr2RuO4 measured along different axes in
momentum space. Notice the approximate linearity of the low-energy branches (acoustic phonons)
at small momenta. Superimposed at high frequencies are various branches of optical phonons.
(Source: Courtesy of M. Braden, II. Physikalisches Institut, Universität zu Köln.)

Expressing the operators (φ̂k, π̂k) in terms of (âk, â
†
k), it is now straightforward to bring the

Hamiltonian into the quasi-particle oscillator form (exercise)

Ĥ =
∑
k

ωk

(
â†kâk +

1

2

)
. (1.34)

Equations (1.34) and (1.33) represent the final result of our analysis. The Hamiltonian Ĥ

takes the form of a sum of harmonic oscillators with characteristic frequencies ωk. In the

limit k → 0 (i.e. long wavelength), one finds ωk → 0; excitations with this property are said

to be massless.

An excited state of the system is indexed by a set {nk} = (n1, n2, . . . ) of quasi-particles

with energy {ωk} (see Fig. 1.7). Physically, the quasi-particles of the harmonic chain are

identified with the phonon modes of the solid. A comparison with measured phonon

spectra (Fig. 1.8) reveals that, at low momenta, ωk ∼ |k| in agreement with our simplistic

model (even in spite of the fact that the spectrum was recorded for a three-dimensional

solid with non-trivial unit cell – universality!). While the linear dispersion was already a

feature of the classical sound wave spectrum, the low-temperature specific heat reflected

non-classical behavior. It is left as an exercise (problem 1.8) to verify that the quantum

nature of the phonons resolves the problem with the low-temperature specific heat discussed

in Section 1.1. (For further discussion of phonon modes in atomic lattices we refer to Chapter

2 of the text by Kittel.17)

1.5 Quantum electrodynamics

The generality of the procedure outlined above suggests that the quantization of the EM

field Eq. (1.24) proceeds in a manner analogous to the phonon system. However, there are

a number of practical differences that make quantization of the EM field a harder (but

also more interesting!) enterprise. Firstly, the vectorial character of the vector potential, in

combination with the condition of relativistic covariance, gives the problem a non-trivial

internal geometry. Closely related, the gauge freedom of the vector potential introduces

redundant degrees of freedom whose removal on the quantum level is not easily achieved. For

17 C. Kittel, Quantum Theory of Solids, 2nd edition (Wiley, 1987).


